NumPy module has no attribute 'float' Error
Problem Statement
When using np.float()
in NumPy 1.24 or later, you may encounter:
AttributeError: module 'numpy' has no attribute 'float'
This occurs because:
np.float
was an alias for Python's built-infloat
type- It was deprecated in NumPy 1.20 (2021)
- It was removed completely in NumPy 1.24 (2022)
This change affects code like:
import numpy as np
num = np.float(3) # Error in NumPy >= 1.24
DEPRECATION TIMELINE
- NumPy 1.20 (2021): Started issuing deprecation warnings
- NumPy 1.24 (2022): Permanent removal causing AttributeError
Recommended Solutions
1. Use Python's Built-in float
(Most Common Fix)
Replace np.float
with Python's native float
:
num = float(3) # ✅ Correct replacement
Why this works:
- Behaviorally identical to
np.float
- More Pythonic and future-proof
- Works in all NumPy versions
2. Use Explicit NumPy Types (For Specific Precision)
If you need NumPy-specific float types:
# For standard double-precision float (common default)
num = np.float64(3)
# For single-precision float
num = np.float32(3)
3. Alternative NumPy Equivalents
# Valid alternatives (choose based on context)
num = np.double(3) # Alias for float64
num = np.float_(3) # NumPy scalar equivalent
When The Error Comes From Dependencies
1. Update the Offending Package
Ex: For openpyxl
causing the error:
pip install --upgrade openpyxl
2. Downgrade NumPy (Temporary Fix)
pip install "numpy<1.24" # Reverts to pre-1.24 behavior
WARNING
- Not recommended for new projects
- May cause compatibility issues with other packages
3. Check Dependency Compatibility
import numpy
print(numpy.__path__) # Verify installation location
Temporary Monkey-Patch (Not Recommended)
# ⚠️ Use only for legacy code emergencies
import numpy as np
np.float = float # Reassign attribute
np.int = int # Fixes related int errors
np.object = object # Fixes object errors
np.bool = bool # Fixes bool errors
DANGER
This is a last-resort workaround that:
- Masks fundamental compatibility issues
- May cause undefined behavior
- Will break in future NumPy versions
Explanation of Deprecation
NumPy removed these aliases to avoid confusion between Python built-in types and NumPy-specific dtypes. According to the NumPy 1.24 release notes:
The deprecation for the aliases
np.object
,np.bool
,np.float
,np.complex
,np.str
, andnp.int
is expired.
General Replacement Guide:
Deprecated | Recommended Replacement |
---|---|
np.float | Python float or np.float64 |
np.int | Python int or np.int64 |
np.bool | Python bool |
np.object | Python object |
For Array Types:
# ✅ Proper array declaration with explicit types
arr = np.array([1, 2, 3], dtype=np.float64) # Explicit
arr = np.array([1, 2, 3], dtype=float) # Equivalent
Best Practices
Use built-in Python types (
int
,float
,bool
) when:- Dealing with scalar values
- Precision isn't critical
- Writing general-purpose code
Use explicit NumPy dtypes (
np.float32
,np.int64
) when:- Memory optimization needed
- Interfacing with C code
- Implementing performance-critical operations
VERSION COMPATIBILITY TESTING
Always test with np.__version__
before upgrades:
print(np.__version__) # Check before major updates