OpenAI API Token Limit: Managing Maximum Context Length
Problem Statement
When working with OpenAI's language models, you may encounter this critical error:
{
"message": "This model's maximum context length is 4097 tokens, however you requested 5360 tokens (1360 in your prompt; 4000 for the completion). Please reduce your prompt or completion length.",
"type": "invalid_request_error"
}
This error occurs when your prompt tokens (input text) plus requested output tokens exceed the model's fixed context window size. For example:
- Prompt tokens: 1360
- Requested completion tokens: 4000
- Total requested tokens: 5360
- Model's maximum context length: 4097 tokens
The problem has these common causes:
- Setting
max_tokens
too high - Using a prompt that's too long for the model
- Not accounting for tokens consumed by both input and output together
Understanding Token Limitations
OpenAI models have strict token constraints due to technical limitations. Key principles:
Token Allocation
max_tokens
defines the maximum response length, but prompt tokens + response tokens together can't exceed the model's context window.
Common model limits (as of 2023-11):
text-davinci-003
: 4,097 tokensgpt-3.5-turbo
: 4,096 tokensgpt-3.5-turbo-16k
: 16,385 tokensgpt-4-1106-preview
: 128,000 tokens
Solutions
1. Calculate Available Space for Completion
Adjust max_tokens
to fit within the model's token limit:
const prompt = "Your large content here...";
const promptTokens = 1360; // Calculate this using tokenizer
const modelMaxTokens = 4097; // For text-davinci-003
// Calculate max_tokens safely
const maxCompletionTokens = modelMaxTokens - promptTokens;
const response = await openai.createCompletion({
model: 'text-davinci-003',
prompt,
max_tokens: maxCompletionTokens, // Will be 4097 - 1360 = 2737
temperature: 0.2
});
Token Counting Accuracy
Always count tokens using the official methods:
- Use OpenAI's Tokenizer (web)
- Pre-calculate via
tiktoken
library - Never trust manual estimation
2. Upgrade to Higher-Capacity Models
Switch to models with larger context windows:
// GPT-3.5-turbo 16k version
const response16k = await openai.createCompletion({
model: 'gpt-3.5-turbo-16k',
prompt,
max_tokens: 4000 // Fits comfortably within 16k limit
});
// GPT-4 Turbo (128k context)
const responseTurbo = await openai.createCompletion({
model: 'gpt-4-1106-preview',
prompt,
max_tokens: 4000
});
3. Optimize Long Text Submissions
When working with lengthy content:
Chunking Technique
function chunkText(text, maxChunkSize) {
const chunks = [];
while (text.length) {
chunks.push(text.substring(0, maxChunkSize));
text = text.substring(maxChunkSize);
}
return chunks;
}
const textChunks = chunkText(longText, 2000); // Customize chunk size
Text Summarization Flow
4. Reduce Prompt Size
- Remove redundant sentences
- Use abbreviated terminology where clear
- Convert prose into bullet points
- Split requests into multiple API calls
- Leverchain-of-thought prompting to break down complex queries
Advanced Considerations
Chat Model Specifics
For chat models (gpt-3.5-turbo
, gpt-4
):
// Chat models require message objects
const response = await openai.createChatCompletion({
model: "gpt-3.5-turbo",
messages: [
{role: "system", content: "You are a helpful assistant"},
{role: "user", content: prompt}
],
max_tokens: 4000
});
Chat Token Complexity
Chat models consume extra tokens for message formatting. Use OpenAI's tiktoken
library for precise counting.
Migration Path from Legacy Models
Upgrade deprecated models to avoid future issues:
Legacy Model | Recommended Replacement | Context Tokens |
---|---|---|
text-davinci-003 | gpt-3.5-turbo-instruct | 4,096 |
gpt-4-0314 | gpt-4 | 8,192 |
gpt-4-32k-0314 | gpt-4-32k-0613 | 32,768 |
Best Practices Summary
- Always calculate
prompt_tokens + max_tokens <= model limit
- Verify token counts with official tools
- Choose context-appropriate models
- Use chunking/summarization for very long content
- Regularly update to latest models
- Implement error handling for token limits:
try {
// API call here
} catch (error) {
if (error.message.includes('maximum context length')) {
console.log('Token limit exceeded - reduce prompt or use larger model');
}
}
For the most current model specifications, consult OpenAI's Official Model Documentation.