Skip to content

OpenAI API Token Limit: Managing Maximum Context Length

Problem Statement

When working with OpenAI's language models, you may encounter this critical error:

json
{
  "message": "This model's maximum context length is 4097 tokens, however you requested 5360 tokens (1360 in your prompt; 4000 for the completion). Please reduce your prompt or completion length.",
  "type": "invalid_request_error"
}

This error occurs when your prompt tokens (input text) plus requested output tokens exceed the model's fixed context window size. For example:

  • Prompt tokens: 1360
  • Requested completion tokens: 4000
  • Total requested tokens: 5360
  • Model's maximum context length: 4097 tokens

The problem has these common causes:

  1. Setting max_tokens too high
  2. Using a prompt that's too long for the model
  3. Not accounting for tokens consumed by both input and output together

Understanding Token Limitations

OpenAI models have strict token constraints due to technical limitations. Key principles:

Token Allocation

max_tokens defines the maximum response length, but prompt tokens + response tokens together can't exceed the model's context window.

Common model limits (as of 2023-11):

  • text-davinci-003: 4,097 tokens
  • gpt-3.5-turbo: 4,096 tokens
  • gpt-3.5-turbo-16k: 16,385 tokens
  • gpt-4-1106-preview: 128,000 tokens

Solutions

1. Calculate Available Space for Completion

Adjust max_tokens to fit within the model's token limit:

js
const prompt = "Your large content here...";
const promptTokens = 1360; // Calculate this using tokenizer
const modelMaxTokens = 4097; // For text-davinci-003

// Calculate max_tokens safely
const maxCompletionTokens = modelMaxTokens - promptTokens;

const response = await openai.createCompletion({
  model: 'text-davinci-003',
  prompt,
  max_tokens: maxCompletionTokens, // Will be 4097 - 1360 = 2737
  temperature: 0.2
});

Token Counting Accuracy

Always count tokens using the official methods:

  • Use OpenAI's Tokenizer (web)
  • Pre-calculate via tiktoken library
  • Never trust manual estimation

2. Upgrade to Higher-Capacity Models

Switch to models with larger context windows:

js
// GPT-3.5-turbo 16k version
const response16k = await openai.createCompletion({
  model: 'gpt-3.5-turbo-16k',
  prompt,
  max_tokens: 4000 // Fits comfortably within 16k limit
});

// GPT-4 Turbo (128k context)
const responseTurbo = await openai.createCompletion({
  model: 'gpt-4-1106-preview',
  prompt,
  max_tokens: 4000
});

3. Optimize Long Text Submissions

When working with lengthy content:

Chunking Technique

js
function chunkText(text, maxChunkSize) {
  const chunks = [];
  while (text.length) {
    chunks.push(text.substring(0, maxChunkSize));
    text = text.substring(maxChunkSize);
  }
  return chunks;
}

const textChunks = chunkText(longText, 2000); // Customize chunk size

Text Summarization Flow

4. Reduce Prompt Size

  • Remove redundant sentences
  • Use abbreviated terminology where clear
  • Convert prose into bullet points
  • Split requests into multiple API calls
  • Leverchain-of-thought prompting to break down complex queries

Advanced Considerations

Chat Model Specifics

For chat models (gpt-3.5-turbo, gpt-4):

js
// Chat models require message objects
const response = await openai.createChatCompletion({
  model: "gpt-3.5-turbo",
  messages: [
    {role: "system", content: "You are a helpful assistant"},
    {role: "user", content: prompt}
  ],
  max_tokens: 4000
});

Chat Token Complexity

Chat models consume extra tokens for message formatting. Use OpenAI's tiktoken library for precise counting.

Migration Path from Legacy Models

Upgrade deprecated models to avoid future issues:

Legacy ModelRecommended ReplacementContext Tokens
text-davinci-003gpt-3.5-turbo-instruct4,096
gpt-4-0314gpt-48,192
gpt-4-32k-0314gpt-4-32k-061332,768

Best Practices Summary

  1. Always calculate prompt_tokens + max_tokens <= model limit
  2. Verify token counts with official tools
  3. Choose context-appropriate models
  4. Use chunking/summarization for very long content
  5. Regularly update to latest models
  6. Implement error handling for token limits:
js
try {
  // API call here
} catch (error) {
  if (error.message.includes('maximum context length')) {
    console.log('Token limit exceeded - reduce prompt or use larger model');
  }
}

For the most current model specifications, consult OpenAI's Official Model Documentation.